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Nutation Damper Instability on Spin-Stabilized Spacecraft
GERALD J. CLOUTIER*

Itek Corporation, Lexington, Mass.

The dynamic equations describing the motion of a single-degree-of-freedom nutation
damper mounted on a dual-spin spacecraft are examined. The motion of the damper mass
is found to be parametrically excited by the transverse angular rates, so that instabilities of
this motion are possible. In this situation, instability could imply that the damper mass
moves to an extreme position and remains there; hence, it would not perform its intended
function of dissipating energy in order to damp out nutation. It is found that this unstable
behavior is quite possible for a damper mounted on a single-spin spacecraft or on the spinning
portion of a dual-spin spacecraft where the other member is essentially despun. On the other
hand, unstable behavior of a damper mounted on the despun member of a dual-spin con-
figuration is found to be extremely unlikely.
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Nomenclature

= moments of inertia, slug ft2 (ft-lb-sec2)
= angular momentum ratio
= angular momentum, ft-lb-sec
= moment, ft-lb
= amplitude of angular velocities, rad/sec
= acceleration, ft /sec2

= length, ft
= damping constant, Ib-sec/ft
= parameters
= natural frequency, rad/sec
= spring constant, Ib/ft
= mass, slugs (Ib-sec2/ft)
= velocity, fps
= parameters
= damping ratio
= wobble angle, rad
= characteristic exponent
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r = nondimensional time
£2 = precessional frequency, rad/sec
co = angular velocity, rad/sec

Introduction

MANY passive nutation dampers (passive implying that
the damper is driven by the coning motion of the

spacecraft) have been proposed for eliminating undesirable
nutational motions of spin-stabilized spacecraft.1"3 The
analyses for most of these designs involve many approxima-
tions and linearizations, since they are intended to provide
design guidelines for the dampers. However, some analysts
have examined the complete set of equations for certain
dampers and have uncovered nonlinear and even unstable
forms of motion.4'5 An important aspect of any damper
application, then, is the study of any possible nonlinear be-
havior or instability in its motion. In this paper, a very
simple, one-degree-of-freedom, mass-spring-dashpot damper
is analyzed. This type of damper has been studied previ-
ously (by a linearized analysis) for a single-spin system,6
but in the present case, the analysis is expanded to include
dual-spin systems, i.e., spacecraft consisting of two major
bodies which rotate relative to one another about a common
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spin axis. A form of instability of the motion of the damper
mass is pointed out and discussed, and criteria for the onset
of this unstable motion are established.

Complete Equations of Motion

The configuration analyzed is shown in Fig. 1. For
simplification, it is assumed that both bodies are inertially
symmetric about their common spin axes, the z and f axes.
The spin moments of inertia, C\ and C2, of the bodies and the
transverse moments, Ai and Az, are referenced to the com-
posite center of mass of the two main bodies. The complete
system center-of-mass actually shifts relative to the spin
axis due to the motion of the damper mass, but Fang7 has
shown that this moving mass can be rigorously accounted for
by retaining as the origin of coordinates the center-of-mass
of the main bodies and by introducing a "reduced mass" for
the moving damper mass equal to

m = md(l — md/ms) (1)

where md is the actual damper mass and ms is the total mass
of the spacecraft. The equations of motion will be written
relative to the x,y,z triad fixed in body 2, the body which
contains the damper.

With the definition AI + A% = A} the angular momentum
components are

Hx =
Hy =

A a; x
A&V mbvx — mxvz>

• Cz&z + mxvy)
(2)

where vxj vy, and vz are the linear velocity components of the
damper mass relative to the composite center of mass and
are given by

vx = x +
— bux> (3)

Substituting into Euler's equations

Hi + co jHk - uj

where t, ,/, and k represent cyclic permutations of x, y, and z,
yields

0

- (C2 — A)uz]uy = mb[2xuz

wr ~^~ (^2 ~~ A)uz]ux = —m[bx -

j*z = —mx[2xooz + 6(coyco2 — cox)

The acceleration of the damper mass in the # direction is

ax = x — x(uy
2 + cos

2) + b(uxuz + coy)

and from Newton's law

(4)

(5)

(6)

(c/m)x + (k/m)x = 0
so that
x + (c/m)x + (k/m — co2

2 — (7)

Equations (4-7) form a set of four equations for the five
variables ux, uy, uz, co^, and x; another condition or equation
is required. One could, for example, introduce an equation
describing the transfer function of a motor drive and control
system connecting the two bodies. Alternatively, one of the
bodies could be assumed to be perfectly despun. A some-
what different assumption will be made in order to obtain an
approximate solution to the equations, as described later.

Consider the coefficient of x in Eq. (7). The apparent
spring constant of the damper is diminished by the centrifugal

£ ,n, ? AXES FIXED IN BODY 1
X,Y,Z AXES FIXED IN BODY 2

Fig. 1 Spacecraft dynamics parameters.

force due to spin about the z axis (the co2
2 term) and also by

the contribution of the cross spin centrifugal force (the coy
2

term). Although the latter term may be small compared to
the first terms, it cannot be neglected, since this periodic
force can cause parametric excitation of the damper mass
motion. In fact, the homogeneous part of Eq. (7) bears a
strong resemblance to Hill's equation, which has been ex-
tensively studied.8 Forms of this type of equation can lead
to instability of the motion, i.e., the variable x could grow
without bound. Similar instabilities have been uncovered
previously. Kane9 and Thomson and Fung10 have analyzed
the dynamics of spinning bodies with auxiliary translating
particles which involve parametric excitation. However, in
these references, the auxiliary particle parametrically excites
the main body through Coriolis forces; conversely, the
present problem concerns the main body exciting an auxiliary
particle by centrifugal forces. Since Eqs. (4-7) cannot be
solved analytically, an approximate solution will be obtained
in order to derive criteria for the combinations of parameters
which could lead to instability. Digital computer solutions
of special cases of the full set of equations, which were used to
verify the instability criteria, will be discussed subsequently.

Approximate Solution

The effects of the damper moments are usually very small
during one cycle of rotation, so that the homogeneous solu-
tions of Eqs. (4-6) will serve to describe the motion of the
basic system quite adequately for several cycles. (This is
the assumption used in most approximate treatments.)
Hence, the present problem is to solve the set of equations

Acb, - [Cicor + (C2 - A)u
dcbf + C2cb2 = 0

= 0

= 0

(8)

(9)

(10)
The necessary additional condition chosen herein is that the
kinetic energy of the system is essentially constant for several
cycles of spin, which implies that any motor provided between
two bodies only serves to compensate for frictional losses
in the mutual bearings. It can be shown by consideration of
the energy integral of the equations that this condition im-
plies that Wf and a** are both constant for several cycles.
(Hence, this assumption includes the perfectly despun situa-
tion as a special case.) Then, defining the constant parameter

(C2 - A)co2]/A
the solutions to Eqs. (8) and (9) are evidently

co* = P

(ID
(12)
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Fig. 2 Mathieu equation stability diagram (the cross-
hatched areas are regions of stability).

a>y = -P costit (13)

The components of angular momentum of this system are11

H sin0 = A(cox
2 + co,2)1/2 (14)

H cos0 = dcor + <72coz (15)

where 6 is the "wobble angle/7 i.e., the angle between the
spin axis of the spacecraft and the angular momentum
vector. Hence

P = (H/A) sin0

= (H/A) cos0 - co,
(16)

(17)
It can be shown11 that the quantity 0 must be positive to
insure stability of rotation. If 12 were negative, then the
damper would tend to tumble the vehicle rather than to re-
store pure spin.

Turning now to the motion of the damper, the homogeneous
part of Eq. (7) is

x + (c/m)x + (k/m - co*2 - <av*)x = 0 (18)

Defining
/n

2 = k/m - co,2 (19)

and using Eq. (13) (and double-angle formulas), then

x + (c/m)x + [(/n2 - P2/2) - (P2/2) cos20J]z - 0 (20)

Introducing nondimensional time
T = tit

and the damping ratio

f = c/2mfn (21)
then we have

2 _

(22)

In order to put the equation into a standard form, it will be
necessary to eliminate the first derivative term. This can
be done by introducing the transformation12

x = a expl-f(/n/0)r]

which, with a = da/dr, etc., yields

(23)

Finally, if we define

and

2e

then
a + (d - 2e cos2r)a = 0

(25)

(26)

(27)

Equation (27) can now be recognized as a standard form of
Hill's equation known as the Mathieu equation. A stability
chart for this equation has been generated for a large range
of values of B and e.8 The relevant area of the stability chart
of interest here is shown on Fig. 2. If the parameters in a
particular problem fall into a region of instability on this
graph, then a grows without, bound; however, the solution
for x may still be stable. This is true since the variable a is
multiplied by a decreasing exponential in Eq. (23). Unstable
solutions for a. are always of the form

a = F(r) exp(jur) (28)

where F(r) is a periodic function.13 Hence, the solution for
the initial variable, x, will be of the form

- f/n/Q)r] (29)

so that the criterion for stability becomes

(M - f/n/0) < 0 (30)
Lines of constant M> the "characteristic exponent" (obtained
from Ref. 14), are shown on Fig. 2. For any given design,
the parameters d and e can be found using relations (25)
and (26); then Fig. 2 can be consulted to determine if there
is any instability and, if so, the corresponding value of jit.
Finally, Eq. (30) can be used to determine the stability of the
actual system.

For all systems investigated, any possible instability would
occur in one of the two regions labeled on Fig. 2. In region
I, the cross-spin centrifugal force term, i.e., the coj,2 term in
Eq. (7), becomes large enough to make the apparent spring
constant of the damper negative during part of the motion.
This negative spring constant leads to a divergent motion of
the damper mass, a monotonically increasing deflection with
a small, superimposed oscillation, as shown in Fig. 3. In
region II of Fig. 2, the apparent spring constant is always
positive, but here the cross-spin term increases the damper
mass motion during each cycle, so that x will typically be an
oscillation with an exponentially increasing amplitude
(flutter). This characteristic motion is suggested by the

DIVERGENCE INSTABILITY
(REGION I)

Fig. 3 Types of
instability.

FLUTTER INSTABILITY
(REGION II)
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lower sketch in Fig. 3. For an actual physical damper,
where motion of the damper mass would be restricted by the
walls of a container or by built-in stops, this implies that for
instabilities in region I, the damper mass would move to an
extreme position and remain there so that it would not per-
form its intended function of dissipating energy.

In region II, on the other hand, the damper mass would
continue to oscillate even if it bounced off the walls of its
container. With suitable cushions at these walls, this type
of motion could conceivably be desirable, since it would tend
to dissipate a great deal of energy. However, Fig. 2 and
Eq. (30) indicate that even for low values of damping, large
nutation angles would be necessary to cause instability (to
bring the design point above the critical /-t curve).

Application of Criteria to Sample Cases

It will prove instructive to examine some specific applica-
tions of the foregoing criteria to determine whether or not
some of these instability modes are actually possible in typical

With the aid of Eqs. (15-17), the important parameters
e and 5, Eqs. (25) and (26), can be put into the form

and

where

e = (D tan20)/4 (31)

= (1 - n[/»/(#/A)]2[4e + D] - 2e (32)

D = (33)

There are three important cases which can now be discussed.
They are as follows.

Case 1 Dual-spin spacecraft with one member despun;
damper mounted on despun portion. This case is exemplified
by the OSO satellite.15

Case 2 Dual-spin spacecraft with one member despun;
damper mounted on spinning portion. The ITS-III com-
munications satellite belongs to this category, since the nuta-
tion damper is on the basic (spinning) spacecraft and not on
the mechanically despun antenna. (Note, however, that
the motion of the particular damper now used on this space-
craft is not described by the damper equations derived
herein.16)

Case 3 Single, rigid body spacecraft.
The damper has been assumed always mounted on body

2, so that case 1 is characterized by coa = 0, case 2 by coj- = 0,
and case 3 by o>$- = co2.

For case 1, with coz — 0, D becomes equal to 1. Then,
Eq. (31) indicates that even for moderate nutation angles,
the quantity e will be restricted to very small numbers.
Since for instabilities to occur in region II large values of e
and small damping are required, it seems unlikely that this
type of instability could occur. Thus, only instabilities in
region I are of concern here.

In region I, the near linearity of the ju, curves allows a simple
criterion to be derived for instability (for small e). Inci-
dentally, this simple criterion is not restricted to despun
systems; it holds in general. It can be seen from Fig. 2
that in region I

S _ _ .o ~ / (34)

Using Eqs. (25, 26, and 30), the stability criterion becomes

P2 - 2/n
2 > 0

or, with Eq. (16)

(H/A) smO < (2)»% (35)

It is of interest that this criterion is independent of the
damping ratio.

For efficient operation, the damper could be "tuned" to
the nutation rate 12 at zero nutation angle

fn « H/A

Hence, the stability criterion becomes

sind < (2)1/2

(36)

(37)

which is, of course, always true. Suppose that the system
is designed for despin, but that the despun portion loses its
reference signal and begins to speed up due to friction. In
this situation, the apparent natural frequency of the damper
is given by Eq. (19), where, if the system has been tuned to
despun conditions

k/m =
Thus, Eq. (35) can be written

(H/A) sin0 < - co,2]1/2 (38)

The maximum allowable value of co2 is that which causes
12 to go to zero, since larger w2 will result in the relative nuta-
tion rate, 12, going negative, which leads to over-all attitude
drift instability of the whole system. From Eq. (17)

= (H/A) cos(9
so that Eq. (38) becomes

1 < (2)1 (39)
which is always true.

Thus, this type of instability is not a problem for a dual-
spin system in which one member is despun and where the
despun-body-mounted nutation damper is approximately
tuned to the nutation frequency of the system. Some cau-
tion may still be required if the damper cannot be turned to
the nutation frequency for physical reasons, or if the system
is operating in some off-design mode (e.g., if the actual spin
rate turns out to be quite different from the design spin rate) .

Turning to cases 2 and 3, with cof = 0, the parameter D for
case 2 is given by

D = [C2/(C2- AW (40)

while for case 3, with coi == coz, and C\ + Cz = C

D = (C/(C - A)]2 (41)

Since Eqs. (42) and (43) are the same in form, these two cases
can be discussed simultaneously. For convenience, case 3
will be discussed, but the conclusions will also hold for case
2 with the quantity C replaced by C%.

For vehicles in which C is only slightly greater than A,f
D can be quite large; hence, the quantity e can also be a
large number, even for small nutation angles. This means
that instabilities in both regions I and II are possible.

For example, in region I, the stability criterion, Eq. (35),
can be written

(C/A)<*s tan/9 < (2)U

If we again tune the damper such that

fn = 12(0 = 0) = [(C/A) - I

the criterion reduces to

sintf < (2)1/2[(C - A)/C]

(42)

(43)

Now, if C is not much greater than A, instability could indeed
occur, which is in contrast to case 1, in which instability was
almost impossible.

t It will be remembered that C must be larger than A for
over-all system stability since now, from Eq. (11), 12 = [(C —
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Fig. 4 Time history of damper mass motion, 00 = 10°.

Exact Solution

To determine just what effect the "instability" which has
been uncovered has on a system, the complete set of equa-
tions of motion for case 3, i.e., Eqs. (4-7), with cof = co2, were
programed for solution on a digital computer. The particu-
lar parameter values chosen for the runs were selected from
among the cases discussed by Wadleigh et al.6 and by Slach-
muylders17 in his comment on the Wadleigh et al. paper.
These two references were concerned with linearized solu-
tions to this set, so that the computer solution also served as
a check on the accuracy of the linearized equations. The
parameter values are given in Table 1.

The parameters for case 3 fall into region I of the stability
diagram (Fig. 2). Substituting the values listed in Table 1
into Eq. (42) leads to a critical nutation angle of 18.4° as
the boundary of instability, i.e., the motion of the system
should change radically if it is started with a nutation angle
greater than 18.4°.

Computer runs were made using initial nutation angles of
2°, 10°, and 20°. The resulting damper motion for a 10°
nutation angle is shown in Fig. 4 (the motions for an angle of
2° are essentially identical except for minor differences in the
starting transient). Figure 5 shows the damper mass mo-
tion when the starting angle is 20°; the divergent behavior
is strikingly evident. However, after starting out with a
strongly divergent motion, the damper mass settles down to
an off-center oscillation.

If the damper design had been based on the linearized
analysis, this behavior would have been unsuspected, and the
case designed to hold the damper mass and damping fluid
would probably have been designed to be slightly longer than
the maximum expected excursion. In that event, the di-
vergent motion of the damper mass for a 20° angle would
actually be container-limited. A typical result for this
situation is depicted in Fig. 6 (the container was simulated on
the computer by stepwise increases in the damping and
.spring constants).

CONTAINER WALL

TIME (SECS)

Fig. 6 Time history of damper mass motion, Oo = 20°,
container-limited.

The resulting effects of these damper motions on the system
are shown in Fig. 7. Here, the rates of decay of one of the
transverse angular rates are plotted for each of the initial
nutation angles. (These curves are the envelopes of the
rates, which are oscillatory.) The "time constant/7 i.e.,
the time for the transverse rate to decrease to I/e of its initial
value, for the 20° angle, container-limited case is 12% higher
than for the 2° and 10° angle cases, and almost 20% higher
than the 20°, non-container-limited case. Of course, different
assumptions about the characteristics of the container wall
could alter the results even more drastically.

Both of the cases started at a 20° nutation angle will con-
verge to unsymmetric configurations in which the damper
mass will end up in an off-center position, the spring force
being balanced by centrifugal force. Thus, the main body
will not end up in pure spin about its own principal axis, but
instead will be spinning about a displaced axis. What has
happened in this particular case is that there exists a new
equilibrium state of the system, described by

My = &y = MX = Uz = X = X = 0 (44)

_ ^ \[ k _ ( Jl _ u
k/m/\_m \m

x/b = —uxuz/(k/m — (46)

as can be verified by direct substitution into the exact equa-
tions of motion. A similar equilibrium state has been
found for this type of system previously,18 but in that situa-
tion, the basic motion of pure spin about the symmetry axis
was found to be unstable. Here, both the pure spin and
this new, displaced orientation can exist; the damper in-
stability has driven the system into the latter state. The
ultimate question of stability of this new state of motion
involves consideration of other damping mechanisms (such
as hysteresis or fuel sloshing in the main satellite bodies) and
is beyond the scope of the present discussion.

It should be mentioned that the results for the 2° and 10°
cases verified the prediction of Slachmuylders17; the trans-
verse rate decreased to TV of its initial value in 120 sec just as
shown on Fig. Ib of Ref. 14. This agreement indicates that
linearizing the equations of motion is valid for damper design

Table 1 Parameter values for computer solution
of case 3 equations of motion

Parameter Value

C/A
mb*/A
COZ

(/C/m)l/2a

1.36
6.46 X 10~4

8.79 rad/sec
9.22 rad/sec
0.5

TIME (SECS)

Fig. 5 Time history of damper mass motion, 0a = 20°

a This damper is not "tuned"; its natural frequency while spinning is
90% of the nutation frequency.

6 This parameter X is the damping ratio based on the nonspinning nat-
ural frequency of the damper, (k/m)1/2.
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TIME (SECS)

Fig. 7 Time history of transverse angular rates.

purposes, as long as the initial nutation angle is less than the
critical angle for instability.

Discussion and Conclusions

The form of the equation governing the motion of this
particular nutation damper mounted on a dual-spin space-
craft does admit of possible unstable motions. However,
for a spacecraft with a despun member and a tuned damper
mounted on the despun member, it has been found that in-
stabilities can occur only for off-design conditions very differ-
ent from typical nominal design conditions.

Included in this category (a despun-member-mounted
damper) are spacecraft whose moments of inertia are such
that they can be unstable in attitude if the damper is not
operating. Hence, tumbling could occur if the nutation
damper were indeed subject to divergent instability, so that
the improbability of unstable damper behavior is a fortuitous
result.

On the other hand, if the damper is mounted on the spinning
portion of a dual-spin spacecraft or for the special case of a
single rigid body spacecraft, it is quite possible for instabili-
ties of the damper's motion to occur. These instabilities
could appear if the nutation angle became large enough to
violate the stability criteria, which could occur during atti-
tude reorientation maneuvers, for example. Since such
satellites must be designed to be stable against tumbling,
then the damper instability will not tumble the vehicle, but
may drive it into a new, undesirable equilibrium state. Since
many other specific types of damper have motions described
by differential equations with periodic coefficients (before
linearization), the possibility of parametric excitation of the
motion of these dampers should be checked carefully in all
spin-stabilized satellite designs.
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